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Abstract: A stereocontrolled synthesis of O-(6-O-sulfo-~-D-GlcNAc)-(l~3)-0-(6-O-sulfo-~-D-Gal)- 
(1+4)-O-(6-O-sulfo-8-D-GlcNAc)-(l-s3)-Gal trisodium salt, a part structure of the acidic glycan of 
bovine cornea1 keratan sulfate, was achieved for the first time. 

Keratan sulfate I occurs as a major component of the extracellular matrix of the cornea2 

and carries sulfated poly N-acetyllactosamine chains. Fucosylated structures of poly N- 

acetyllactosamine chains of glycoconjugates were identified as stage-specific antigens3 in the 

developing mouse embryo and a characteristic of certain embryonic and tumor cells of man4. 

Sulfation of poly N-acetyllactosamine chains is also regulated developmentally. Upon retinoic 

acid treatment, mouse tetratocarcinoma cells were induced to differentiate and synthesized an 

increased amount of a proteoglycans that are structually very similar to keratan sulfate I. The 

polysulfated glycan chains of keratan sulfate I are elongated from complex type oligosaccharide 

core structures that are linked to L-asparagine through N-glycosidic linkage6. The structures 

sulfated oligosaccharides enzymatically released from bovine cornea1 keratan sulfate were 

recently chemically characterixed7, 
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A plausible synthetic approach to a putative sturcture 1 for keratan sulfate I is shown in 

Scheme 1. Since the complex type glycononaose core. structure 3 has already been synthesized*, 

synthetic experiments directed to the sulfa-glycan 2 should be exploited. We now describe a 

stereo-controlled synthesis of tri-0-sulfa-glycotetraose 2(n=l) according to the synthetic plan 

shown in Scheme 2. The key intermediate glycotetraoside 5 was designed so as to function after 

partial dcprotection as a suitable substrate 4 for sulfation, and may be synthesized by sequential 

glycosylations of a glycosyl acceptor 89 with glycosyl donors 7 and 6. The lactosaminyl donor 7 

should be prepared from known monosaccharide synthons 9’8 and lo1 l. 

Conversion of ally1 glycoside 10 into the glycosyl donor 612 was achieved in 3 steps in 62% 

overall yield via compounds 11 12 and 1212; 1 Ag20, KI, and benzyl bromide in DMF, 2 (Ph3P)3RhCl 

and DABCO in 7:3:1 EtOH-PhH-H20, then HgO and HgCI2 in aq. Me2CO13, 3 CCl3CN and DBU14. 
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Schema 2 (MP = p44eOPh, TBDPS z Bu’Ph,SI) 

convcrtcd to the imidate 712 in 87% yield. 

Conversion of ally1 glycoside 10 

into the glycobiosyl donor 7 was 

performed in 34% overall yield in 7 

steps as follows. Silver triflate 

promoted glycosylation of 10 with the 

chloride 9 gave a 92% yield of p-(1+4) 

linked glycobioside 1312. The P-D- 

configuration at a newly generated 

stereocenter C-lb in 13 was 

anticipated by the presence of an 

acetyl auxiliary at O-2 in 9 and was 

confirmed by 1~ n.m.r. data. 

Deacetylation of diacetate 13 with 

LiOH-H202*5 gave a 91% yield of the 

diol 1412 which was benzylated to 

afford tri-O-benzyl derivative 15 l2 in 

90% yield. Deallylation of 15 with 

Wilkinson’s catalyst as described 

before and acetylation of the product 

16 gave a 71% overall yield of 

triacctate 1712 as a mixture of 8- and 

a-anomer in a ratio of 11:l. 

Chemoselective cleavage of anomeric 

acetate was achieved by HzNNH2*AcOH 

in DMF16 to give a 73% yield of 

hemiacetal 18 which was then 

Having prepared the glycosyl donors 6 and 7, glycosylation of benzyl galactoside 8 was now 

examined. Trifluoroborane etherate promoted glycosylation of 8 with the glycosyl donor 7 gave 

an 83% yield of desired glycotriaoside 19 12. The configuration of C-lb was expected as 8-D 

according to the presence of C-2 N-phthaloyl group*7 in 7 and confirmed by *H n.m.r. data for 

19. Deacetylation of 19 by NaOMe-MeOH gave a 92% yield of the diol 20t2. Attempted introduction 

of a p-methoxyphenyl group at 0-6~ by Mitsunobu reaction failed and gave quantitatively 3,6- 

anhydro derivative 2212. Alternatively the diol 20 was treated with ButPhZSiC118 and imidazole to 

afford a glycosyl acceptor Zl12 in 78% yield. 

Trifluoroborane etherate promoted glycosylation of 21 with 6 afforded glycotetraoside 

23 l2 in 72% yield based on consumed glycosyl acceptor 21. Dephthaloylation with 

NH2NH2*H20 l7 and acetylation afforded a 63% yield of the designed key intermediate 5, that was 

further transformed into target molecule 2 as follows. Ammonium cerium(IV) nitrate 

treatment19 of 5 in aq.CHgCN gave a 75% yield of the dial 2412, which was desilylated with 

Bu4NF20 in THF to yield a 78% of the trio1 2512 suitable as a substrate for sulfation. Treatment 

with S03aNMe3 complex in DMF at 50° afforded tri-sulfo compound 26L2 in 93% yield, which was 

hydrogenolyzed in the presence of 10% Pd-C in 9:l MeOH-H20 to give the target 2(n=l) in 
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Schem, 3 

92% yield. IH-N.m.r. data for 

synthetic 2 was in good 

agreement with those reported7 

for the sample isolated from 

bovine cornea1 keratan sulfate I. 

In conclusion, by 

combining a versatile synthetic 

route to a sulfa-glycan 2 

described here with the already 

available synthetic route to a 

core glycononaose 3. a 

reasonable possibility for the 

assemblage of a whole structure 

of keratan sulfate I may be 

emerged as shown in Scheme 1. 
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